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Statistical model of polar nematic polymers 
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t Cavendish Laboratory, Cambridge University, Cambridge CB3 OHE, England 

and Department of Physics, Tsinghua University, Beijing 100084, China 
$ Department of Physics, San Jose State University, 

San Jose, California 95192, U.S.A. 

(Received 23 September 1991) 

The interaction in specially designed polymers may be dominated by the first 
rank P,(cosp) type potential instead of the second rank P2(cosP) type, as in 
conventional liquid crystal polymers (P,(cos p) and P,(cos p) are the first and 
second Legendre polynomials, respectively of the angle made by the polymer 
segments with respect to the preferred direction or director). The ordering of the 
polymers is envisaged in terms of the worm-like theory. The polymers show a polar 
nematic phase, that is a ferroelectric phase. These polymers have certain interesting 
properties, such as a second order polar nematic-isotropic transition, and related 
critical features. These materials are expected to exhibit giant dielectric responses. 
For more general polymer systems with interactions of both P,(cos P) and P,(cos P)  
types, we predict a peculiar phase behaviour. 

1. Introduction 
In recent years, the study of liquid crystal polymers is of increasing interest in both 

science and industry [l] These polymers are made up of mesogenic groups 
incorporated into the chain back bone or as side chain elements connected by suitable 
links to the main chain. In most of the liquid crystal polymers found so far, the 
dominant interacting potential between the monomers is quadrupolar in nature. 
However, in polar nematic polymers, the interest of the paper, the dipole interaction 
may be more important. As is well-known ferroelectricity has not been discovered in 
low molecular mass nematic liquid crystals. It does exist in chiral smectic liquid crystal 
phases such as S,* and S: [2]. However the S,* phase has to be forced to unwind to give 
the usual ferroelectric properties. In contrast, no such unwinding is needed in the 
hypothetical ferroelectric nematic [3] and so attempts to find ferroelectric nematic 
liquid crystals have not disappeared. This paper is concerned with examining the 
possibility of their existence in main chain, semiflexible polymers and, if they exist, to 
predict their phase behaviour. The formation of a ferroelectric nematic depends on the 
dominance of the dipole interaction over the quadrupole interaction and the 
requirement that the energy of the dipole interaction, which is about the order of p 2 / d 3  
(where p is the dipole moment, d the average distance between the dipoles) has to be of 
the same order of magnitude as the thermal energy kT, (where T, is the transition 
temperature to the ferroelectric state). Unfortunately, with the possible exception of 
bowlic molecules [3], when the molecules have very large dipole moments they tend to 
form dimers with opposite directions of the dipole moments, which prevents the 
appearance of the spontaneous polarization. 
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412 X. J. Wang and L. Lam 

In consequence, semiflexible polymers, synthesized with large dipole moments in a 
sequence carried by the monomers along the chains in the same direction, may be better 
candidates for forming a polar nematic phase than the monomers. They have less 
tendency to form dimers after polymerization since two monomers of different chains 
being antiparallel does not imply in semiflexible chains that all other monomers in the 
two chains are also in contact with antiparallel monomers. Polar nematic polymers 
have been discussed by Lam [4] in terms of a lattice model, but only very dilute systems 
were discussed. 

This paper is concerned with the nature of the phase transition between the polar 
nematic and isotropic phases, the character of the order of the polar nematic polymers, 
and their electric response. 

2. The model 
In this section, we apply the functional integral technique to describe orientational 

distribution of the tangent to the polymers and then map the problem into a diffusion 
equation of a particle on the surface of a unit sphere in a dipolar mean field. Because the 
polymer system is of the second type, as discussed later, its order parameters in the 
vicinity of the transition are small and hence a perturbation approach is a useful 
method in this region to examine the phase transition and the critical features of the 
system; at low temperatures the polar field becomes large and the asymptotic method is 
appropriate. In addition a numerical calculation is also carried out to give the complete 
dependence of the order parameter on temperature. 

The functional integral technique, proposed by Feynman and Hibbs [S] to deal 
with questions in quantum mechanics, is naturally applied to the study of the statistical 
mechanics of the polymer system [6 ] .  The functional integrals relate the configurations 
of a polymer to the paths of a particle when the particle is undergoing brownian or 
diffusive motion. If the chain is worm-like, the bending of the chain will cost an energy 

E du(s) j&-] ds, 

where E is the bending constant, L is the length of the polymer, and u is the tangent unit 
vector along the chain at arc length s so that 

u - u =  1. (2) 
We assume that such a main chain semiflexible polymer favours a long range order of 
parallel alignment, after summing along the chain, the dipolar potential is given by, in 
the mean field approximation, 

L 
u 4 =-j 0 bP,P,(cos 0) ds, (3) 

where b is the coupling constant and is positive in this case, P,(cos 0) = cos l3 is the first 
Legendre ploynomial, and P ,  is the polar nematic order parameter. 

In analogy to the P ,  case discussed by Warner et al. [7] and Wang and Warner [S], 
the angular diffusion equation in the dipole potential is given by, with /3= l /kT,  

V; -jbP,P,(cos 0) G(U,U';S,S')=~(U-U')~(S-S'), 1 [--- a 1  
as 2jE (4) 
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Polar nematic polymers 413 

where G(U, U'; s, s') is the Green function for the diffusion equation and 6(x - x') is the 
Dirac delta function. Note that in G the argument is the arc position s instead of time, 
1/(2jb) acts like a rotational diffusion coefficient and we denote 1/(2p~) by D later on; 
D-' is the persistence length. For a uniaxial system G becomes, assuming the s- 
dependent factor exp (- 1,Dls - s'l), 

A, + - sin 0 - + gP,(cos 0)  +,(t9) = 0, [ sl:e;( ddg) ] 
where A,, are the eigenvalues and the coupling constant g = BbP,/D = 2P,/p2 with the 
reduced temperature T= k T / ( b ~ ) ' / ~ .  The eigenfunctions are Yn(e) and so the Green 
function is 

m 

n = O  
G(O,8'; S ,  s') = C $,,@)+,,(8') exp (- 1,Dls - s'l). 

Knowing the Green function we are able to obtain the statistical properties of the chain, 
e.g. the polar order parameter. By definition the order parameter, which is the ensemble 
average of P,(cos e), is expressed in terms of the Green function as 

dzdz'dz"G(z', z;  L, s)G(z, z"; s, O)P,(z) 

dzdz'dz''G(z', z; L, s)G(z, z"; s, 0) 
=s:: sss sss 9 (7) 

where z = cos 8. 
We first investigate the phase behaviour of the polymers in terms of the analytic 

approach, that is the perturbation approach for the temperature region at the polar 
nematic-isotropic transition and the asymptotic method for low temperatures, and 
these are followed by numerical calculations. 

2.1. Perturbative approach 
Considering gP,(cos 19) as a perturbation term, the unperturbed differential 

equation is the Legendre equation. Therefore, to first order in g, the eigenfunctions of 
the operator in equation (5) are given by 

If the chain is long enough the ground state (n=O) dominates in G because of the 
exponential dependence on L. Putting Yo into equation (6) and then into equation (7) 
we immediately obtain the second order polar nematic-isotropic (P-I) phase transition 
which occurs at pc = (2/3)'12 = 0.816. 
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414 X. J. Wang and L. Lam 

The free energy F per chain is given to fourth order in the perturbation by 

Pt g2 P:: 11 
F/(kTLD)=I,+ "2 N - - + - + -g4 T - 6 T 2  1080 

F is always less than zero in the polar phase as T< Tc( = (2/3)'/') and so the polar phase 
is stable. 

Minimization of the free energy in (9) gives the polar order parameter PI for the 
temperature range immediately below the transition. The result is 

where ct is a constant = J(45/22). 

2.2. Finite chain 
If the chains are not very long, the excited states become important. For the sake of 

simplicity we include one higher excited state only and so the P-I transition occurs at 

1 1 
Tc(L)= Tc(co) 1 - -[l -exp( -2LD)I . [ 2LD 

The term in the square brackets is actually the ratio of the mean square dimension 
relative to its value when L is infinite at the isotropic state, i.e. (R2)/(LD-l). The 
equation implies that the transition temperature is proportional to the mean square 
dimension of the polymer. The neglect of even higher terms does not change the result 
significantly. The term from the second excited state is only 2 per cent of that from the 
first excited state even when LD is as small as unity. Equation (1 1) gives the long chain 
result if L>>D-'. 

2.3. Asymptotics 
In the strong polar nematic limit, either at low temperature or with a strong polar 

potential, 0 is confined around the region near a pole, e.g. 0 = 0. We may then solve the 
problem asymptotically and approximately for small 8. In this limit equation ( 5 )  is 
rewritten as 

which is equivalent to equation (6.1) of [7] despite the up-down symmetry of the 
director being absent in our case since we are interested only in states close to one pole 
of the tangent's sphere. Since then these states are similar to those in the nematic 
problem we obtain 
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Polar nematic polymers 415 

which is a cubic equation in 
are discarded on physical grounds. The relevant solution for P ,  is given by 

There are three real roots of the cubic, two of which 

2.4. Numerical results 
We also calculate the polar order parameter numerically. Following the approach 

used in solving the problem for conventional nematic polymers [8] we expand the 
eigenfunctions in terms of Legendre polynomials as 

Substituting equation (15) back into equation (5) we obtain a set of linear equations for 
the expansion coefficients c.,,,, viz. 

Putting equation (15) into equation (7) for P ,  and using ground state dominance, we 
obtain 

The numerical results are shown as the dark line in figure 1, while the dashed line and 
the dotted line are the perturbation results and asymptotic calculation, respectively. It 
demonstrates that the perturbation and asymptotic approaches work well around the 
transition and in the low temperature region, respectively. 

3. Field effects and critical features 
Low molecular mass nematic liquid crystals are well-known [9-131 to respond to 

external fields which couple either to the positive diamagnetic anisotropy of molecules 
or their anisotropy of molecular polarizability in the electric field case. Among these 
Palffy-Muhoray et al. [ 131 have examined the possibility of ferroelectric nematics. The 
field effects were also studied for a conventional nematic polymer [14,15]. 

In the underlying polar nematic polymer system, when an electric field E is applied, 
its contribution to the energy is given by 

where ,u is the dipole moment which is along the tangent of the chain. Instead of 
equation (5), in this case we have 

g = 2(P1 + y ) / P  (19) 
where y=,uE/b.  A procedure similar to those in the field-free case and in the 
conventional nematic case when an external field is applied [l5] is carried out. The 
order parameter P ,  can be obtained straightforwardly for a long chain. In an applied 
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416 X. J. Wang and L. Lam 

I I 
0 . 5  0 . 6  0.7 0.8 0 . 9  

kF/& 
Figure 1. The order parameter PI as a function of scaled temperature The dotted and dashed 

lines show the perturbation and asymptotic results, respectively. The full line is the 
numerical result. 

0. 
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k F l 6  
Figure 2. The order parameter as a function of the normalized temperature and the external 

electric field. 

field P ,  is not only a function of T, but also of y as well. Figure 2 presents the numerical 
results. In an applied electric field the phase gap disappears. The order parameter P ,  at 
high temperature is no longer zero because the external field induces polymer order. 
The perturbative approach is also applicable to describe the critical behaviour. 

After some algebra we obtain the dielectric susceptibility of the polymers x above 
the transition 
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Polar nematic polymers 417 

and below the transition 

where Pis the polarization and d the sectional dimension. The exponent for x is - 1, the 
classical exponent as expected from mean field theory. The ratio of the Curie constants 
above and below TC is 2 which is confirmed by the numerical calculation. 

4. Giant dielectric response 
We predict a giant dielectric response. The polarization vector P is given, generally, 

by 

P=X-E+X(”:EE+X(~):EEE (22) 
where X, x(’), x(3) are the linear and non-linear dielectric susceptibilities, respectively. In 
addition, the gradient of the electric field may contribute to the polarization, but it is 
not important in our case. 

For the low molecular mass liquid crystals, the dielectric response x,, is 

For the nematic polymer, Gunn and Warner [14] predicted the linear polarization 
susceptibility xnp to be given by 

LP2 
X n p =  ____ kTd2E, 

which is greater than zm by a factor of 3L/d, the degree of polymerization. In polar 
nematic polymers, the polymers in the same domain respond as a whole and thus the 
linear susceptibility xPp  is predicted to be 

It is even greater by a factor of the average number n of molecules in a domain. 
Accordingly, the non-linear dielectric response of the polar nematic polymers is also 
larger. A concomitant hysteresis of polarization versus applied electric field is also 
expected. 

5. General systems: polar and nematic interactions 
Based on the method and results for systems with either the potential of P,(cos 6 )  or 

P,(cos 6), we consider the more general case with both dipole and quadrupole 
interactions. Here 

Udq= - 1: [bP,P,(cos 6 )  + aP,P,(cos 6)l ds. 
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- 2nd N . 
c h 

w -  
m 
v 1 

5 
0.388- 

tricritical point 

a / b  
Figure 3. The phase diagram for a general liquid crystal polymer system. 

The P ,  and P ,  are the polar and the conventional nematic order parameters 
respectively, defined in the usual manner. 

In the isotropic liquid state, P ,  = P2 = 0; the usual non-polar nematics have PI = 0, 
and P ,  #O; the polar nematic phase has both PI and F, not equal to zero. Krieger and 
James [16] have studied the phase diagram for molecular crystals with the potential 

u = bP,(cos 0) + aP,(cos 0). (27) 
Later Ypma and Vertogen [lo] examined the effect of permanent dipoles on the 
nematic-isotropic phase transition by assuming a similar potential. Their phase 
diagram is analogous to that in the mean field approximation [16]. Leung and Lin [ 171 
suggested the same form of interaction for bowlic liquid crystals and then obtained a 
similar phase diagram. The sign of the dipolar coupling constant, b, determines whether 
the ferroelectric (minus sign) or antiferroelectric state (plus sign) appears. A similar 
phase diagram has also been obtained by Palffy-Muhoray et al. [ 131 by means of the 
Laudaude Gennes theory. In analogy to those in the molecular crystals and the low 
molar mass liquid crystals we predict a phase diagram for the main chain polymer 
system with the interaction of equation (26). It is depicted in figure 3 where the ordinate 
is the ratio of quadrupolar to dipolar coupling constant, a/b, and the abscissa is the 
reduced temperature kT/(a&)-'. The scaling is a basic difference with the case of low 
molar mass materials and indicates that the contribution of the polymer stiffness plays 
an important role as does the nematic part. 

It has been shown that the nematic phase does not exist if the quadrupolar coupling 
constant a is small, and the transition from the nematic to the isotropic phase is 
essentially independent of the dipolar coupling constant b, as for example at k T / ( a ~ ) ' / ~  
= 0.388. When b is small the dipolar interaction serves as an external field applied to the 
nematic polymers and it then makes the nematic-isotropic transition temperature shift 
slightly in a manner analogous to that in the low molar mass liquid crystals [9] or main 
chain nematic polymers [15]. The transition between the polar nematic phase and the 
isotropic phase is second order when the dipolar interaction dominates, i.e. a /b  is small. 
As a/b increases the quadrupolar interaction becomes comparable with the dipolar 
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Polar nematic polymers 419 

interaction, and then the transition becomes first order via a tricritical point. On further 
increase of a/b, a triple point appears where the isotropic, the polar and the nematic 
phases co-exist. Thereafter the nematic phase appears between the isotropic and the 
polar nematic phase. The transition from polar to nematic phase starts being first order. 
After a tricritical point this transition develops to second order because the 
quadrupolar interaction becomes significant. The temperature range of the nematic 
phase widens and finally the polar nematic phase would be shadowed by a glass 
transition. This is then the case of the conventional nematic limit. 

One of the authors, XJW, acknowledges the fruitful discussions with Dr M. Warner 
(Cambridge University, England). 
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